22
29

Convolutional Phase Retrieval via Gradient Descent

Abstract

We study the convolutional phase retrieval problem, of recovering an unknown signal xCn\mathbf x \in \mathbb C^n from mm measurements consisting of the magnitude of its cyclic convolution with a given kernel aCm\mathbf a \in \mathbb C^m . This model is motivated by applications such as channel estimation, optics, and underwater acoustic communication, where the signal of interest is acted on by a given channel/filter, and phase information is difficult or impossible to acquire. We show that when a\mathbf a is random and the number of observations mm is sufficiently large, with high probability x\mathbf x can be efficiently recovered up to a global phase shift using a combination of spectral initialization and generalized gradient descent. The main challenge is coping with dependencies in the measurement operator. We overcome this challenge by using ideas from decoupling theory, suprema of chaos processes and the restricted isometry property of random circulant matrices, and recent analysis of alternating minimization methods.

View on arXiv
Comments on this paper