ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.03281
13
10

Fast Low-Rank Matrix Estimation without the Condition Number

8 December 2017
Mohammadreza Soltani
C. Hegde
ArXivPDFHTML
Abstract

In this paper, we study the general problem of optimizing a convex function F(L)F(L)F(L) over the set of p×pp \times pp×p matrices, subject to rank constraints on LLL. However, existing first-order methods for solving such problems either are too slow to converge, or require multiple invocations of singular value decompositions. On the other hand, factorization-based non-convex algorithms, while being much faster, require stringent assumptions on the \emph{condition number} of the optimum. In this paper, we provide a novel algorithmic framework that achieves the best of both worlds: asymptotically as fast as factorization methods, while requiring no dependency on the condition number. We instantiate our general framework for three important matrix estimation problems that impact several practical applications; (i) a \emph{nonlinear} variant of affine rank minimization, (ii) logistic PCA, and (iii) precision matrix estimation in probabilistic graphical model learning. We then derive explicit bounds on the sample complexity as well as the running time of our approach, and show that it achieves the best possible bounds for both cases. We also provide an extensive range of experimental results, and demonstrate that our algorithm provides a very attractive tradeoff between estimation accuracy and running time.

View on arXiv
Comments on this paper