ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.04172
146
72
v1v2 (latest)

A Low-Cost Ethics Shaping Approach for Designing Reinforcement Learning Agents

12 December 2017
Yueh-hua Wu
Shou-De Lin
    OffRL
ArXiv (abs)PDFHTML
Abstract

This paper proposes a low-cost, easily realizable strategy to equip a reinforcement learning (RL) agent the capability of behaving ethically. Our model allows the designers of RL agents to solely focus on the task to achieve, without having to worry about the implementation of multiple trivial ethical patterns to follow. Based on the assumption that the majority of human behavior, regardless which goals they are achieving, is ethical, our design integrates human policy with the RL policy to achieve the target objective with less chance of violating the ethical code that human beings normally obey.

View on arXiv
Comments on this paper