ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.06128
37
5
v1v2 (latest)

A Distributed Particle-PHD Filter with Arithmetic-Average PHD Fusion

17 December 2017
Tiancheng Li
Franz Hlawatsch
    FedML
ArXiv (abs)PDFHTML
Abstract

We propose a particle-based distributed PHD filter for tracking an unknown, time-varying number of targets. To reduce communication, the local PHD filters at neighboring sensors communicate Gaussian mixture (GM) parameters. In contrast to most existing distributed PHD filters, our filter employs an `arithmetic average' fusion. For particles--GM conversion, we use a method that avoids particle clustering and enables a significance-based pruning of the GM components. For GM--particles conversion, we develop an importance sampling based method that enables a parallelization of filtering and dissemination/fusion operations. The proposed distributed particle-PHD filter is able to integrate GM-based local PHD filters. Simulations demonstrate the excellent performance and small communication and computation requirements of our filter.

View on arXiv
Comments on this paper