ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.07008
83
84
v1v2v3 (latest)

Privacy-Preserving Adversarial Networks

19 December 2017
Ardhendu Shekhar Tripathy
Ye Wang
Prakash Ishwar
    PICV
ArXiv (abs)PDFHTML
Abstract

We propose a data-driven framework for optimizing privacy-preserving data release mechanisms toward the information-theoretically optimal tradeoff between minimizing distortion of useful data and concealing sensitive information. Our approach employs adversarially-trained neural networks to implement randomized mechanisms and to perform a variational approximation of mutual information privacy. We empirically validate our Privacy-Preserving Adversarial Networks (PPAN) framework with experiments conducted on discrete and continuous synthetic data, as well as the MNIST handwritten digits dataset. With the synthetic data, we find that our model-agnostic PPAN approach achieves tradeoff points very close to the optimal tradeoffs that are analytically-derived from model knowledge. In experiments with the MNIST data, we visually demonstrate a learned tradeoff between minimizing the pixel-level distortion versus concealing the written digit.

View on arXiv
Comments on this paper