ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.08987
6
24

Learning to Run with Actor-Critic Ensemble

25 December 2017
Zhewei Huang
Shuchang Zhou
BoEr Zhuang
Xinyu Zhou
    OffRL
ArXivPDFHTML
Abstract

We introduce an Actor-Critic Ensemble(ACE) method for improving the performance of Deep Deterministic Policy Gradient(DDPG) algorithm. At inference time, our method uses a critic ensemble to select the best action from proposals of multiple actors running in parallel. By having a larger candidate set, our method can avoid actions that have fatal consequences, while staying deterministic. Using ACE, we have won the 2nd place in NIPS'17 Learning to Run competition, under the name of "Megvii-hzwer".

View on arXiv
Comments on this paper