ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.09473
20
55

Sketching for Kronecker Product Regression and P-splines

27 December 2017
H. Diao
Zhao-quan Song
Wen Sun
David P. Woodruff
ArXivPDFHTML
Abstract

TensorSketch is an oblivious linear sketch introduced in Pagh'13 and later used in Pham, Pagh'13 in the context of SVMs for polynomial kernels. It was shown in Avron, Nguyen, Woodruff'14 that TensorSketch provides a subspace embedding, and therefore can be used for canonical correlation analysis, low rank approximation, and principal component regression for the polynomial kernel. We take TensorSketch outside of the context of polynomials kernels, and show its utility in applications in which the underlying design matrix is a Kronecker product of smaller matrices. This allows us to solve Kronecker product regression and non-negative Kronecker product regression, as well as regularized spline regression. Our main technical result is then in extending TensorSketch to other norms. That is, TensorSketch only provides input sparsity time for Kronecker product regression with respect to the 222-norm. We show how to solve Kronecker product regression with respect to the 111-norm in time sublinear in the time required for computing the Kronecker product, as well as for more general ppp-norms.

View on arXiv
Comments on this paper