ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.10252
44
22
v1v2v3 (latest)

Spectral analysis for nonstationary audio

29 December 2017
Adrien Meynard
Bruno Torrésani
ArXiv (abs)PDFHTML
Abstract

A new approach for the analysis of nonstationary signals is proposed, with a focus on audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-breaking operators acting on Gaussian stationary random signals. The focus is on time warping and amplitude modulation, and an approximate maximum-likelihood approach based on suitable approximations in the wavelet transform domain is developed. This paper provides theoretical analysis of the approximations, and introduces JEFAS, a corresponding estimation algorithm. The latter is tested and validated on synthetic as well as real audio signal.

View on arXiv
Comments on this paper