18
29

High Dimensional Spaces, Deep Learning and Adversarial Examples

Abstract

In this paper, we analyze deep learning from a mathematical point of view and derive several novel results. The results are based on intriguing mathematical properties of high dimensional spaces. We first look at perturbation based adversarial examples and show how they can be understood using topological and geometrical arguments in high dimensions. We point out mistake in an argument presented in prior published literature, and we present a more rigorous, general and correct mathematical result to explain adversarial examples in terms of topology of image manifolds. Second, we look at optimization landscapes of deep neural networks and examine the number of saddle points relative to that of local minima. Third, we show how multiresolution nature of images explains perturbation based adversarial examples in form of a stronger result. Our results state that expectation of L2L_2-norm of adversarial perturbations is O(1n)O\left(\frac{1}{\sqrt{n}}\right) and therefore shrinks to 0 as image resolution nn becomes arbitrarily large. Finally, by incorporating the parts-whole manifold learning hypothesis for natural images, we investigate the working of deep neural networks and root causes of adversarial examples and discuss how future improvements can be made and how adversarial examples can be eliminated.

View on arXiv
Comments on this paper