ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.02531
70
39
v1v2 (latest)

A Scale-out Blockchain for Value Transfer with Spontaneous Sharding

8 January 2018
Zhijie Ren
Kelong Cong
Taico V. Aerts
Bart A. P. de Jonge
Alejandro F. Morais
Z. Erkin
ArXiv (abs)PDFHTML
Abstract

Bitcoin, as well as many of its successors, require the whole transaction record to be reliably acquired by all nodes to prevent double-spending. Recently, many blockchains have been proposed to achieve scale-out throughput by letting nodes only acquire a fraction of the whole transaction set. However, these schemes, e.g., sharding and off-chain techniques, suffer from a degradation in decentralization or the capacity of fault tolerance. In this paper, we show that the complete set of transactions is not a necessity for the prevention of double-spending if the properties of value transfers is fully explored. In other words, we show that a value-transfer ledger like Bitcoin has the potential to scale-out by its nature without sacrificing security or decentralization. Firstly, we give a formal definition for the value-transfer ledger and its distinct features from a generic database. Then, we introduce an off-chain based scheme with a shared main chain for consensus and an individual chain for each node for recording transactions. A locally executable validation scheme is proposed with uncompromising validity and consistency. A beneficial consequence of our design is that nodes will spontaneously try to reduce their transmission cost by only providing the transactions needed to show that their transactions are double-spending-proof. As a result, the network is sharded as each node only acquires part of the transaction record and a scale-out throughput could be achieved, which we call "spontaneous sharding".

View on arXiv
Comments on this paper