ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.03138
9
2

Deep In-GPU Experience Replay

9 January 2018
Ben Parr
    OffRL
    VLM
ArXivPDFHTML
Abstract

Experience replay allows a reinforcement learning agent to train on samples from a large amount of the most recent experiences. A simple in-RAM experience replay stores these most recent experiences in a list in RAM, and then copies sampled batches to the GPU for training. I moved this list to the GPU, thus creating an in-GPU experience replay, and a training step that no longer has inputs copied from the CPU. I trained an agent to play Super Smash Bros. Melee, using internal game memory values as inputs and outputting controller button presses. A single state in Melee contains 27 floats, so the full experience replay fits on a single GPU. For a batch size of 128, the in-GPU experience replay trained twice as fast as the in-RAM experience replay. As far as I know, this is the first in-GPU implementation of experience replay. Finally, I note a few ideas for fitting the experience replay inside the GPU when the environment state requires more memory.

View on arXiv
Comments on this paper