ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.03530
19
123

Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition

5 January 2018
Jianshu Zhang
Jun Du
Lirong Dai
ArXivPDFHTML
Abstract

Handwritten mathematical expression recognition is a challenging problem due to the complicated two-dimensional structures, ambiguous handwriting input and variant scales of handwritten math symbols. To settle this problem, we utilize the attention based encoder-decoder model that recognizes mathematical expression images from two-dimensional layouts to one-dimensional LaTeX strings. We improve the encoder by employing densely connected convolutional networks as they can strengthen feature extraction and facilitate gradient propagation especially on a small training set. We also present a novel multi-scale attention model which is employed to deal with the recognition of math symbols in different scales and save the fine-grained details that will be dropped by pooling operations. Validated on the CROHME competition task, the proposed method significantly outperforms the state-of-the-art methods with an expression recognition accuracy of 52.8% on CROHME 2014 and 50.1% on CROHME 2016, by only using the official training dataset.

View on arXiv
Comments on this paper