ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.05401
33
676

Low-Shot Learning from Imaginary Data

16 January 2018
Yu-xiong Wang
Ross B. Girshick
M. Hebert
Bharath Hariharan
    VLM
ArXivPDFHTML
Abstract

Humans can quickly learn new visual concepts, perhaps because they can easily visualize or imagine what novel objects look like from different views. Incorporating this ability to hallucinate novel instances of new concepts might help machine vision systems perform better low-shot learning, i.e., learning concepts from few examples. We present a novel approach to low-shot learning that uses this idea. Our approach builds on recent progress in meta-learning ("learning to learn") by combining a meta-learner with a "hallucinator" that produces additional training examples, and optimizing both models jointly. Our hallucinator can be incorporated into a variety of meta-learners and provides significant gains: up to a 6 point boost in classification accuracy when only a single training example is available, yielding state-of-the-art performance on the challenging ImageNet low-shot classification benchmark.

View on arXiv
Comments on this paper