ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.05926
37
17
v1v2 (latest)

The Utility Cost of Robust Privacy Guarantees

18 January 2018
Hao Wang
Mario Díaz
Flavio du Pin Calmon
Lalitha Sankar
ArXiv (abs)PDFHTML
Abstract

Consider a data publishing setting for a data set with public and private features. The objective of the publisher is to maximize the amount of information about the public features in a revealed data set, while keeping the information leaked about the private features bounded. The goal of this paper is to analyze the performance of privacy mechanisms that are constructed to match the distribution learned from the data set. Two distinct scenarios are considered: (i) mechanisms are designed to provide a privacy guarantee for the learned distribution; and (ii) mechanisms are designed to provide a privacy guarantee for every distribution in a given neighborhood of the learned distribution. For the first scenario, given any privacy mechanism, upper bounds on the difference between the privacy-utility guarantees for the learned and true distributions are presented. In the second scenario, upper bounds on the reduction in utility incurred by providing a uniform privacy guarantee are developed.

View on arXiv
Comments on this paper