ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.01267
16
1

ClassSim: Similarity between Classes Defined by Misclassification Ratios of Trained Classifiers

5 February 2018
Kazuma Arino
Yohei Kikuta
ArXivPDFHTML
Abstract

Deep neural networks (DNNs) have achieved exceptional performances in many tasks, particularly, in supervised classification tasks. However, achievements with supervised classification tasks are based on large datasets with well-separated classes. Typically, real-world applications involve wild datasets that include similar classes; thus, evaluating similarities between classes and understanding relations among classes are important. To address this issue, a similarity metric, ClassSim, based on the misclassification ratios of trained DNNs is proposed herein. We conducted image recognition experiments to demonstrate that the proposed method provides better similarities compared with existing methods and is useful for classification problems. Source code including all experimental results is available at https://github.com/karino2/ClassSim/.

View on arXiv
Comments on this paper