ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04198
34
11

client2vec: Towards Systematic Baselines for Banking Applications

12 February 2018
Leonardo Baldassini
Jose Antonio Rodríguez Serrano
    AI4TS
ArXiv (abs)PDFHTML
Abstract

The workflow of data scientists normally involves potentially inefficient processes such as data mining, feature engineering and model selection. Recent research has focused on automating this workflow, partly or in its entirety, to improve productivity. We choose the former approach and in this paper share our experience in designing the client2vec: an internal library to rapidly build baselines for banking applications. Client2vec uses marginalized stacked denoising autoencoders on current account transactions data to create vector embeddings which represent the behaviors of our clients. These representations can then be used in, and optimized against, a variety of tasks such as client segmentation, profiling and targeting. Here we detail how we selected the algorithmic machinery of client2vec and the data it works on and present experimental results on several business cases.

View on arXiv
Comments on this paper