ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04520
84
3
v1v2 (latest)

Learning Robust and Adaptive Real-World Continuous Control Using Simulation and Transfer Learning

13 February 2018
M. Ferguson
K. Law
ArXiv (abs)PDFHTML
Abstract

We use model-free reinforcement learning, extensive simulation, and transfer learning to develop a continuous control algorithm that has good zero-shot performance in a real physical environment. We train a simulated agent to act optimally across a set of similar environments, each with dynamics drawn from a prior distribution. We propose that the agent is able to adjust its actions almost immediately, based on small set of observations. This robust and adaptive behavior is enabled by using a policy gradient algorithm with an Long Short Term Memory (LSTM) function approximation. Finally, we train an agent to navigate a two-dimensional environment with uncertain dynamics and noisy observations. We demonstrate that this agent has good zero-shot performance in a real physical environment. Our preliminary results indicate that the agent is able to infer the environmental dynamics after only a few timesteps, and adjust its actions accordingly.

View on arXiv
Comments on this paper