ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05861
82
38
v1v2v3 (latest)

Generalizing Bottleneck Problems

16 February 2018
Hsiang Hsu
S. Asoodeh
Salman Salamatian
Flavio du Pin Calmon
ArXiv (abs)PDFHTML
Abstract

Given a pair of random variables (X,Y)∼PXY(X,Y)\sim P_{XY}(X,Y)∼PXY​ and two convex functions f1f_1f1​ and f2f_2f2​, we introduce two bottleneck functionals as the lower and upper boundaries of the two-dimensional convex set that consists of the pairs (If1(W;X),If2(W;Y))\left(I_{f_1}(W; X), I_{f_2}(W; Y)\right)(If1​​(W;X),If2​​(W;Y)), where IfI_fIf​ denotes fff-information and WWW varies over the set of all discrete random variables satisfying the Markov condition W→X→YW \to X \to YW→X→Y. Applying Witsenhausen and Wyner's approach, we provide an algorithm for computing boundaries of this set for f1f_1f1​, f2f_2f2​, and discrete PXYP_{XY}PXY​, . In the binary symmetric case, we fully characterize the set when (i) f1(t)=f2(t)=tlog⁡tf_1(t)=f_2(t)=t\log tf1​(t)=f2​(t)=tlogt, (ii) f1(t)=f2(t)=t2−1f_1(t)=f_2(t)=t^2-1f1​(t)=f2​(t)=t2−1, and (iii) f1f_1f1​ and f2f_2f2​ are both ℓβ\ell^\betaℓβ norm function for β>1\beta > 1β>1. We then argue that upper and lower boundaries in (i) correspond to Mrs. Gerber's Lemma and its inverse (which we call Mr. Gerber's Lemma), in (ii) correspond to estimation-theoretic variants of Information Bottleneck and Privacy Funnel, and in (iii) correspond to Arimoto Information Bottleneck and Privacy Funnel.

View on arXiv
Comments on this paper