ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.07581
20
3

Universal Hypothesis Testing with Kernels: Asymptotically Optimal Tests for Goodness of Fit

21 February 2018
Shengyu Zhu
Biao Chen
Pengfei Yang
Zhitang Chen
ArXivPDFHTML
Abstract

We characterize the asymptotic performance of nonparametric goodness of fit testing. The exponential decay rate of the type-II error probability is used as the asymptotic performance metric, and a test is optimal if it achieves the maximum rate subject to a constant level constraint on the type-I error probability. We show that two classes of Maximum Mean Discrepancy (MMD) based tests attain this optimality on Rd\mathbb R^dRd, while the quadratic-time Kernel Stein Discrepancy (KSD) based tests achieve the maximum exponential decay rate under a relaxed level constraint. Under the same performance metric, we proceed to show that the quadratic-time MMD based two-sample tests are also optimal for general two-sample problems, provided that kernels are bounded continuous and characteristic. Key to our approach are Sanov's theorem from large deviation theory and the weak metrizable properties of the MMD and KSD.

View on arXiv
Comments on this paper