ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08163
32
101

An Analysis of Categorical Distributional Reinforcement Learning

22 February 2018
Mark Rowland
Marc G. Bellemare
Will Dabney
Rémi Munos
Yee Whye Teh
ArXivPDFHTML
Abstract

Distributional approaches to value-based reinforcement learning model the entire distribution of returns, rather than just their expected values, and have recently been shown to yield state-of-the-art empirical performance. This was demonstrated by the recently proposed C51 algorithm, based on categorical distributional reinforcement learning (CDRL) [Bellemare et al., 2017]. However, the theoretical properties of CDRL algorithms are not yet well understood. In this paper, we introduce a framework to analyse CDRL algorithms, establish the importance of the projected distributional Bellman operator in distributional RL, draw fundamental connections between CDRL and the Cram\ér distance, and give a proof of convergence for sample-based categorical distributional reinforcement learning algorithms.

View on arXiv
Comments on this paper