ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08376
105
49
v1v2v3v4v5v6v7 (latest)

LQG Control and Sensing Co-Design

23 February 2018
Vasileios Tzoumas
Luca Carlone
George J. Pappas
Ali Jadbabaie
ArXiv (abs)PDFHTML
Abstract

We investigate a Linear-Quadratic-Gaussian (LQG) control and sensing co-design problem, where one jointly designs sensing and control policies. We focus on the realistic case where the sensing design is selected among a finite set of available sensors, where each sensor is associated with a different cost (e.g., power consumption). We consider two dual problem instances: sensing-constrained LQG control, where one maximizes control performance subject to a sensor cost budget, and minimum-sensing LQG control, where one minimizes sensor cost subject to performance constraints. We prove no polynomial time algorithm guarantees across all problem instances a constant approximation factor from the optimal. Nonetheless, we present the first polynomial time algorithms with per-instance suboptimality guarantees. To this end, we leverage a separation principle, that partially decouples the design of sensing and control. Then, we frame LQG co-design as the optimization of approximately supermodular set functions; we develop novel algorithms to solve the problems; and we prove original results on the performance of the algorithms, and establish connections between their suboptimality and control-theoretic quantities. We conclude the paper by discussing two applications, namely, sensing-constrained formation control and resource-constrained robot navigation.

View on arXiv
Comments on this paper