ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08946
24
13

Teacher Improves Learning by Selecting a Training Subset

25 February 2018
Yuzhe Ma
Robert D. Nowak
Philippe Rigollet
Xuezhou Zhang
Xiaojin Zhu
ArXivPDFHTML
Abstract

We call a learner super-teachable if a teacher can trim down an iid training set while making the learner learn even better. We provide sharp super-teaching guarantees on two learners: the maximum likelihood estimator for the mean of a Gaussian, and the large margin classifier in 1D. For general learners, we provide a mixed-integer nonlinear programming-based algorithm to find a super teaching set. Empirical experiments show that our algorithm is able to find good super-teaching sets for both regression and classification problems.

View on arXiv
Comments on this paper