ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09180
11
24

Cuttlefish: A Lightweight Primitive for Adaptive Query Processing

26 February 2018
Tomer Kaftan
Magdalena Balazinska
Alvin Cheung
J. Gehrke
ArXivPDFHTML
Abstract

Modern data processing applications execute increasingly sophisticated analysis that requires operations beyond traditional relational algebra. As a result, operators in query plans grow in diversity and complexity. Designing query optimizer rules and cost models to choose physical operators for all of these novel logical operators is impractical. To address this challenge, we develop Cuttlefish, a new primitive for adaptively processing online query plans that explores candidate physical operator instances during query execution and exploits the fastest ones using multi-armed bandit reinforcement learning techniques. We prototype Cuttlefish in Apache Spark and adaptively choose operators for image convolution, regular expression matching, and relational joins. Our experiments show Cuttlefish-based adaptive convolution and regular expression operators can reach 72-99% of the throughput of an all-knowing oracle that always selects the optimal algorithm, even when individual physical operators are up to 105x slower than the optimal. Additionally, Cuttlefish achieves join throughput improvements of up to 7.5x compared with Spark SQL's query optimizer.

View on arXiv
Comments on this paper