Neural Stereoscopic Image Style Transfer
- GAN

Neural style transfer is an emerging technique which is able to endow daily-life images with attractive artistic styles. Previous work has succeeded in applying convolutional neural networks (CNNs) to style transfer for monocular images or videos. However, style transfer for stereoscopic images is still a missing piece. Different from processing a monocular image, the two views of a stylized stereoscopic pair are required to be consistent to provide viewers a comfortable visual experience. In this paper, we propose a novel dual path network for view-consistent style transfer on stereoscopic images. While each view of the stereoscopic pair is processed in an individual path, a novel feature aggregation strategy is proposed to effectively share information between the two paths. Besides a traditional perceptual loss used for controlling style transfer quality in each view, a multi-layer view loss is leveraged to enforce the network to coordinate the learning of both paths to generate view-consistent stylized results. Extensive experiments show that, compared with previous methods, our proposed model can produce stylized stereoscopic images which achieve decent view consistency.
View on arXiv