ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.10123
24
272

Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow

27 February 2018
S. Wiewel
M. Becher
N. Thürey
    AI4CE
ArXivPDFHTML
Abstract

We propose a method for the data-driven inference of temporal evolutions of physical functions with deep learning. More specifically, we target fluid flows, i.e. Navier-Stokes problems, and we propose a novel LSTM-based approach to predict the changes of pressure fields over time. The central challenge in this context is the high dimensionality of Eulerian space-time data sets. We demonstrate for the first time that dense 3D+time functions of physics system can be predicted within the latent spaces of neural networks, and we arrive at a neural-network based simulation algorithm with significant practical speed-ups. We highlight the capabilities of our method with a series of complex liquid simulations, and with a set of single-phase buoyancy simulations. With a set of trained networks, our method is more than two orders of magnitudes faster than a traditional pressure solver. Additionally, we present and discuss a series of detailed evaluations for the different components of our algorithm.

View on arXiv
Comments on this paper