ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.01400
11
99

Concatenated Power Mean Word Embeddings as Universal Cross-Lingual Sentence Representations

4 March 2018
Andreas Rucklé
Steffen Eger
Maxime Peyrard
Iryna Gurevych
ArXivPDFHTML
Abstract

Average word embeddings are a common baseline for more sophisticated sentence embedding techniques. However, they typically fall short of the performances of more complex models such as InferSent. Here, we generalize the concept of average word embeddings to power mean word embeddings. We show that the concatenation of different types of power mean word embeddings considerably closes the gap to state-of-the-art methods monolingually and substantially outperforms these more complex techniques cross-lingually. In addition, our proposed method outperforms different recently proposed baselines such as SIF and Sent2Vec by a solid margin, thus constituting a much harder-to-beat monolingual baseline. Our data and code are publicly available.

View on arXiv
Comments on this paper