ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.03639
20
151

Precision and Recall for Time Series

8 March 2018
Nesime Tatbul
T. Lee
S. Zdonik
Mejbah Alam
Justin Emile Gottschlich
    AI4TS
ArXivPDFHTML
Abstract

Classical anomaly detection is principally concerned with point-based anomalies, those anomalies that occur at a single point in time. Yet, many real-world anomalies are range-based, meaning they occur over a period of time. Motivated by this observation, we present a new mathematical model to evaluate the accuracy of time series classification algorithms. Our model expands the well-known Precision and Recall metrics to measure ranges, while simultaneously enabling customization support for domain-specific preferences.

View on arXiv
Comments on this paper