We show that, during inference with Convolutional Neural Networks (CNNs),
more than 2x to 8xineffectualworkcanbeexposedifinsteadoftargetingthoseweightsandactivationsthatarezero,wetargetdifferentcombinationsofvaluestreamproperties.WedemonstrateapracticalapplicationwithBit−Tactical(TCL),ahardwareacceleratorwhichexploitsweightsparsity,perlayerprecisionvariabilityanddynamicfine−grainprecisionreductionforactivations,andoptionallythenaturallyoccurringsparseeffectualbitcontentofactivationstoimproveperformanceandenergyefficiency.TCLbenefitsbothsparseanddenseCNNs,nativelysupportsbothconvolutionalandfully−connectedlayers,andexploitspropertiesofallactivationstoreducestorage,communication,andcomputationdemands.WhileTCLdoesnotrequirechangestotheCNNtodeliverbenefits,itdoesrewardanytechniquethatwouldamplifyanyoftheaforementionedweightandactivationvalueproperties.Comparedtoanequivalentdata−parallelacceleratorfordenseCNNs,TCLp,avariantofTCLimprovesperformanceby5.05xandis2.98xmoreenergyefficientwhilerequiring22