ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.03816
22
59

ShuffleSeg: Real-time Semantic Segmentation Network

10 March 2018
M. Gamal
Mennatullah Siam
Moemen Abdel-Razek
    SSeg
ArXivPDFHTML
Abstract

Real-time semantic segmentation is of significant importance for mobile and robotics related applications. We propose a computationally efficient segmentation network which we term as ShuffleSeg. The proposed architecture is based on grouped convolution and channel shuffling in its encoder for improving the performance. An ablation study of different decoding methods is compared including Skip architecture, UNet, and Dilation Frontend. Interesting insights on the speed and accuracy tradeoff is discussed. It is shown that skip architecture in the decoding method provides the best compromise for the goal of real-time performance, while it provides adequate accuracy by utilizing higher resolution feature maps for a more accurate segmentation. ShuffleSeg is evaluated on CityScapes and compared against the state of the art real-time segmentation networks. It achieves 2x GFLOPs reduction, while it provides on par mean intersection over union of 58.3% on CityScapes test set. ShuffleSeg runs at 15.7 frames per second on NVIDIA Jetson TX2, which makes it of great potential for real-time applications.

View on arXiv
Comments on this paper