ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04019
328
23
v1v2v3v4 (latest)

Data-Augmented Contact Model for Rigid Body Simulation

Conference on Learning for Dynamics & Control (L4DC), 2018
11 March 2018
Yifeng Jiang
Jiazheng Sun
Chenxi Liu
    PINN
ArXiv (abs)PDFHTML
Abstract

Accurately modeling contact behaviors for real-world, near-rigid materials remains a grand challenge for existing rigid-body physics simulators. This paper introduces a data-augmented contact model that incorporates analytical solutions with observed data to predict the 3D contact impulse which could result in rigid bodies bouncing, sliding or spinning in all directions. Our method enhances the expressiveness of the standard Coulomb contact model by learning the contact behaviors from the observed data, while preserving the fundamental contact constraints whenever possible. For example, a classifier is trained to approximate the transitions between static and dynamic frictions, while non-penetration constraint during collision is enforced analytically. Our method computes the aggregated effect of contact for the entire rigid body, instead of predicting the contact force for each contact point individually, removing the exponential decline in accuracy as the number of contact points increases.

View on arXiv
Comments on this paper