ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06107
13
8

Lipschitz Constrained GANs via Boundedness and Continuity

16 March 2018
Kanglin Liu
Guoping Qiu
    GAN
ArXivPDFHTML
Abstract

One of the challenges in the study of Generative Adversarial Networks (GANs) is the difficulty of its performance control. Lipschitz constraint is essential in guaranteeing training stability for GANs. Although heuristic methods such as weight clipping, gradient penalty and spectral normalization have been proposed to enforce Lipschitz constraint, it is still difficult to achieve a solution that is both practically effective and theoretically provably satisfying a Lipschitz constraint. In this paper, we introduce the boundedness and continuity (BCBCBC) conditions to enforce the Lipschitz constraint on the discriminator functions of GANs. We prove theoretically that GANs with discriminators meeting the BC conditions satisfy the Lipschitz constraint. We present a practically very effective implementation of a GAN based on a convolutional neural network (CNN) by forcing the CNN to satisfy the BCBCBC conditions (BC-GAN). We show that as compared to recent techniques including gradient penalty and spectral normalization, BC-GANs not only have better performances but also lower computational complexity.

View on arXiv
Comments on this paper