ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.07724
6
26

Attention on Attention: Architectures for Visual Question Answering (VQA)

21 March 2018
Jasdeep Singh
Vincent Ying
Alex Nutkiewicz
ArXivPDFHTML
Abstract

Visual Question Answering (VQA) is an increasingly popular topic in deep learning research, requiring coordination of natural language processing and computer vision modules into a single architecture. We build upon the model which placed first in the VQA Challenge by developing thirteen new attention mechanisms and introducing a simplified classifier. We performed 300 GPU hours of extensive hyperparameter and architecture searches and were able to achieve an evaluation score of 64.78%, outperforming the existing state-of-the-art single model's validation score of 63.15%.

View on arXiv
Comments on this paper