ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.08182
43
33

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

22 March 2018
P. Stinis
Tobias J. Hagge
A. Tartakovsky
Enoch Yeung
    GAN
    AI4CE
ArXivPDFHTML
Abstract

We suggest ways to enforce given constraints in the output of a Generative Adversarial Network (GAN) generator both for interpolation and extrapolation (prediction). For the case of dynamical systems, given a time series, we wish to train GAN generators that can be used to predict trajectories starting from a given initial condition. In this setting, the constraints can be in algebraic and/or differential form. Even though we are predominantly interested in the case of extrapolation, we will see that the tasks of interpolation and extrapolation are related. However, they need to be treated differently. For the case of interpolation, the incorporation of constraints is built into the training of the GAN. The incorporation of the constraints respects the primary game-theoretic setup of a GAN so it can be combined with existing algorithms. However, it can exacerbate the problem of instability during training that is well-known for GANs. We suggest adding small noise to the constraints as a simple remedy that has performed well in our numerical experiments. The case of extrapolation (prediction) is more involved. During training, the GAN generator learns to interpolate a noisy version of the data and we enforce the constraints. This approach has connections with model reduction that we can utilize to improve the efficiency and accuracy of the training. Depending on the form of the constraints, we may enforce them also during prediction through a projection step. We provide examples of linear and nonlinear systems of differential equations to illustrate the various constructions.

View on arXiv
Comments on this paper