ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.10916
116
111

Attention-based End-to-End Models for Small-Footprint Keyword Spotting

29 March 2018
Changhao Shan
Junbo Zhang
Yujun Wang
Lei Xie
    AI4TS
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose an attention-based end-to-end neural approach for small-footprint keyword spotting (KWS), which aims to simplify the pipelines of building a production-quality KWS system. Our model consists of an encoder and an attention mechanism. The encoder transforms the input signal into a high level representation using RNNs. Then the attention mechanism weights the encoder features and generates a fixed-length vector. Finally, by linear transformation and softmax function, the vector becomes a score used for keyword detection. We also evaluate the performance of different encoder architectures, including LSTM, GRU and CRNN. Experiments on real-world wake-up data show that our approach outperforms the recent Deep KWS approach by a large margin and the best performance is achieved by CRNN. To be more specific, with ~84K parameters, our attention-based model achieves 1.02% false rejection rate (FRR) at 1.0 false alarm (FA) per hour.

View on arXiv
Comments on this paper