ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.10952
12
19

Towards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only

29 March 2018
Yi-Chen Chen
Chia-Hao Shen
Sung-Feng Huang
Hung-yi Lee
ArXivPDFHTML
Abstract

Automatic speech recognition (ASR) has been widely researched with supervised approaches, while many low-resourced languages lack audio-text aligned data, and supervised methods cannot be applied on them. In this work, we propose a framework to achieve unsupervised ASR on a read English speech dataset, where audio and text are unaligned. In the first stage, each word-level audio segment in the utterances is represented by a vector representation extracted by a sequence-of-sequence autoencoder, in which phonetic information and speaker information are disentangled. Secondly, semantic embeddings of audio segments are trained from the vector representations using a skip-gram model. Last but not the least, an unsupervised method is utilized to transform semantic embeddings of audio segments to text embedding space, and finally the transformed embeddings are mapped to words. With the above framework, we are towards unsupervised ASR trained by unaligned text and speech only.

View on arXiv
Comments on this paper