ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.02675
6
108

Anticipating Traffic Accidents with Adaptive Loss and Large-scale Incident DB

8 April 2018
Tomoyuki Suzuki
Hirokatsu Kataoka
Y. Aoki
Y. Satoh
ArXivPDFHTML
Abstract

In this paper, we propose a novel approach for traffic accident anticipation through (i) Adaptive Loss for Early Anticipation (AdaLEA) and (ii) a large-scale self-annotated incident database for anticipation. The proposed AdaLEA allows a model to gradually learn an earlier anticipation as training progresses. The loss function adaptively assigns penalty weights depending on how early the model can an- ticipate a traffic accident at each epoch. Additionally, we construct a Near-miss Incident DataBase for anticipation. This database contains an enormous number of traffic near- miss incident videos and annotations for detail evaluation of two tasks, risk anticipation and risk-factor anticipation. In our experimental results, we found our proposal achieved the highest scores for risk anticipation (+6.6% better on mean average precision (mAP) and 2.36 sec earlier than previous work on the average time-to-collision (ATTC)) and risk-factor anticipation (+4.3% better on mAP and 0.70 sec earlier than previous work on ATTC).

View on arXiv
Comments on this paper