We consider a problem of multiclass classification, where the training sample is generated from the model , , and are unknown Lipschitz functions. Given a test point , our goal is to estimate . An approach based on nonparametric smoothing uses a localization technique, i.e. the weight of observation depends on the distance between and . However, local estimates strongly depend on localizing scheme. In our solution we fix several schemes , compute corresponding local estimates for each of them and apply an aggregation procedure. We propose an algorithm, which constructs a convex combination of the estimates such that the aggregated estimate behaves approximately as well as the best one from the collection . We also study theoretical properties of the procedure, prove oracle results and establish rates of convergence under mild assumptions.
View on arXiv