ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.03740
51
2
v1v2v3 (latest)

Multimodal Sparse Bayesian Dictionary Learning

10 April 2018
Igor Fedorov
Bhaskar D. Rao
ArXiv (abs)PDFHTML
Abstract

The purpose of this paper is to address the problem of learning dictionaries for multimodal datasets, i.e. datasets collected from multiple data sources. We present an algorithm called multimodal sparse Bayesian dictionary learning (MSBDL). The MSBDL algorithm is able to leverage information from all available data modalities through a joint sparsity constraint on each modality's sparse codes without restricting the coefficients themselves to be equal. Our framework offers a considerable amount of flexibility to practitioners and addresses many of the shortcomings of existing multimodal dictionary learning approaches. Unlike existing approaches, MSBDL allows the dictionaries for each data modality to have different cardinality. In addition, MSBDL can be used in numerous scenarios, from small datasets to extensive datasets with large dimensionality. MSBDL can also be used in supervised settings and allows for learning multimodal dictionaries concurrently with classifiers for each modality.

View on arXiv
Comments on this paper