ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.07835
15
1

Direct Network Transfer: Transfer Learning of Sentence Embeddings for Semantic Similarity

20 April 2018
Li Zhang
Steven R. Wilson
Rada Mihalcea
    FedML
ArXivPDFHTML
Abstract

Sentence encoders, which produce sentence embeddings using neural networks, are typically evaluated by how well they transfer to downstream tasks. This includes semantic similarity, an important task in natural language understanding. Although there has been much work dedicated to building sentence encoders, the accompanying transfer learning techniques have received relatively little attention. In this paper, we propose a transfer learning setting specialized for semantic similarity, which we refer to as direct network transfer. Through experiments on several standard text similarity datasets, we show that applying direct network transfer to existing encoders can lead to state-of-the-art performance. Additionally, we compare several approaches to transfer sentence encoders to semantic similarity tasks, showing that the choice of transfer learning setting greatly affects the performance in many cases, and differs by encoder and dataset.

View on arXiv
Comments on this paper