ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.10727
12
3

Low-memory convolutional neural networks through incremental depth-first processing

28 April 2018
Jonathan Binas
Yoshua Bengio
    SupR
ArXivPDFHTML
Abstract

We introduce an incremental processing scheme for convolutional neural network (CNN) inference, targeted at embedded applications with limited memory budgets. Instead of processing layers one by one, individual input pixels are propagated through all parts of the network they can influence under the given structural constraints. This depth-first updating scheme comes with hard bounds on the memory footprint: the memory required is constant in the case of 1D input and proportional to the square root of the input dimension in the case of 2D input.

View on arXiv
Comments on this paper