ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.03737
26
11

Graph Neural Networks for Learning Robot Team Coordination

9 May 2018
Amanda Prorok
    GNN
ArXivPDFHTML
Abstract

This paper shows how Graph Neural Networks can be used for learning distributed coordination mechanisms in connected teams of robots. We capture the relational aspect of robot coordination by modeling the robot team as a graph, where each robot is a node, and edges represent communication links. During training, robots learn how to pass messages and update internal states, so that a target behavior is reached. As a proxy for more complex problems, this short paper considers the problem where each robot must locally estimate the algebraic connectivity of the team's network topology.

View on arXiv
Comments on this paper