ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.04605
23
381

Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration

11 May 2018
Adrian V. Dalca
Guha Balakrishnan
John Guttag
M. Sabuncu
    DiffM
ArXivPDFHTML
Abstract

Traditional deformable registration techniques achieve impressive results and offer a rigorous theoretical treatment, but are computationally intensive since they solve an optimization problem for each image pair. Recently, learning-based methods have facilitated fast registration by learning spatial deformation functions. However, these approaches use restricted deformation models, require supervised labels, or do not guarantee a diffeomorphic (topology-preserving) registration. Furthermore, learning-based registration tools have not been derived from a probabilistic framework that can offer uncertainty estimates. In this paper, we present a probabilistic generative model and derive an unsupervised learning-based inference algorithm that makes use of recent developments in convolutional neural networks (CNNs). We demonstrate our method on a 3D brain registration task, and provide an empirical analysis of the algorithm. Our approach results in state of the art accuracy and very fast runtimes, while providing diffeomorphic guarantees and uncertainty estimates. Our implementation is available online at http://voxelmorph.csail.mit.edu .

View on arXiv
Comments on this paper