ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.06771
11
776

Convolutional Social Pooling for Vehicle Trajectory Prediction

15 May 2018
Nachiket Deo
Mohan M. Trivedi
ArXivPDFHTML
Abstract

Forecasting the motion of surrounding vehicles is a critical ability for an autonomous vehicle deployed in complex traffic. Motion of all vehicles in a scene is governed by the traffic context, i.e., the motion and relative spatial configuration of neighboring vehicles. In this paper we propose an LSTM encoder-decoder model that uses convolutional social pooling as an improvement to social pooling layers for robustly learning interdependencies in vehicle motion. Additionally, our model outputs a multi-modal predictive distribution over future trajectories based on maneuver classes. We evaluate our model using the publicly available NGSIM US-101 and I-80 datasets. Our results show improvement over the state of the art in terms of RMS values of prediction error and negative log-likelihoods of true future trajectories under the model's predictive distribution. We also present a qualitative analysis of the model's predicted distributions for various traffic scenarios.

View on arXiv
Comments on this paper