ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07405
14
109

Processing of missing data by neural networks

18 May 2018
Marek Śmieja
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
P. Spurek
    AI4TS
ArXivPDFHTML
Abstract

We propose a general, theoretically justified mechanism for processing missing data by neural networks. Our idea is to replace typical neuron's response in the first hidden layer by its expected value. This approach can be applied for various types of networks at minimal cost in their modification. Moreover, in contrast to recent approaches, it does not require complete data for training. Experimental results performed on different types of architectures show that our method gives better results than typical imputation strategies and other methods dedicated for incomplete data.

View on arXiv
Comments on this paper