ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07433
6
18

DeepLogic: Towards End-to-End Differentiable Logical Reasoning

18 May 2018
Nuri Cingillioglu
A. Russo
    NAI
    LRM
ArXivPDFHTML
Abstract

Combining machine learning with logic-based expert systems in order to get the best of both worlds are becoming increasingly popular. However, to what extent machine learning can already learn to reason over rule-based knowledge is still an open problem. In this paper, we explore how symbolic logic, defined as logic programs at a character level, is learned to be represented in a high-dimensional vector space using RNN-based iterative neural networks to perform reasoning. We create a new dataset that defines 12 classes of logic programs exemplifying increased level of complexity of logical reasoning and train the networks in an end-to-end fashion to learn whether a logic program entails a given query. We analyse how learning the inference algorithm gives rise to representations of atoms, literals and rules within logic programs and evaluate against increasing lengths of predicate and constant symbols as well as increasing steps of multi-hop reasoning.

View on arXiv
Comments on this paper