ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07633
61
72
v1v2 (latest)

Heterogeneous Multi-output Gaussian Process Prediction

19 May 2018
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
ArXiv (abs)PDFHTML
Abstract

We present a novel extension of multi-output Gaussian processes for handling heterogeneous outputs. We assume that each output has its own likelihood function and use a vector-valued Gaussian process prior to jointly model the parameters in all likelihoods as latent functions. Our multi-output Gaussian process uses a covariance function with a linear model of coregionalisation form. Assuming conditional independence across the underlying latent functions together with an inducing variable framework, we are able to obtain tractable variational bounds amenable to stochastic variational inference. We illustrate the performance of the model on synthetic data and two real datasets: a human behavioral study and a demographic high-dimensional dataset.

View on arXiv
Comments on this paper