ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07914
21
137

Imitating Latent Policies from Observation

21 May 2018
Ashley D. Edwards
Himanshu Sahni
Yannick Schroecker
Charles Isbell
ArXivPDFHTML
Abstract

In this paper, we describe a novel approach to imitation learning that infers latent policies directly from state observations. We introduce a method that characterizes the causal effects of latent actions on observations while simultaneously predicting their likelihood. We then outline an action alignment procedure that leverages a small amount of environment interactions to determine a mapping between the latent and real-world actions. We show that this corrected labeling can be used for imitating the observed behavior, even though no expert actions are given. We evaluate our approach within classic control environments and a platform game and demonstrate that it performs better than standard approaches. Code for this work is available at https://github.com/ashedwards/ILPO.

View on arXiv
Comments on this paper