ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08936
12
25

Learning Based Industrial Bin-picking Trained with Approximate Physics Simulator

23 May 2018
Ryo Matsumura
Kensuke Harada
Y. Domae
Weiwei Wan
    SSL
ArXivPDFHTML
Abstract

In this research, we tackle the problem of picking an object from randomly stacked pile. Since complex physical phenomena of contact among objects and fingers makes it difficult to perform the bin-picking with high success rate, we consider introducing a learning based approach. For the purpose of collecting enough number of training data within a reasonable period of time, we introduce a physics simulator where approximation is used for collision checking. In this paper, we first formulate the learning based robotic bin-picking by using CNN (Convolutional Neural Network). We also obtain the optimum grasping posture of parallel jaw gripper by using CNN. Finally, we show that the effect of approximation introduced in collision checking is relaxed if we use exact 3D model to generate the depth image of the pile as an input to CNN.

View on arXiv
Comments on this paper