ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09495
13
25

A Practical Algorithm for Distributed Clustering and Outlier Detection

24 May 2018
Jiecao Chen
Erfan Sadeqi Azer
Qin Zhang
ArXivPDFHTML
Abstract

We study the classic kkk-means/median clustering, which are fundamental problems in unsupervised learning, in the setting where data are partitioned across multiple sites, and where we are allowed to discard a small portion of the data by labeling them as outliers. We propose a simple approach based on constructing small summary for the original dataset. The proposed method is time and communication efficient, has good approximation guarantees, and can identify the global outliers effectively. To the best of our knowledge, this is the first practical algorithm with theoretical guarantees for distributed clustering with outliers. Our experiments on both real and synthetic data have demonstrated the clear superiority of our algorithm against all the baseline algorithms in almost all metrics.

View on arXiv
Comments on this paper