ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.09655
11
188

Global-Locally Self-Attentive Dialogue State Tracker

19 May 2018
Victor Zhong
Caiming Xiong
R. Socher
ArXivPDFHTML
Abstract

Dialogue state tracking, which estimates user goals and requests given the dialogue context, is an essential part of task-oriented dialogue systems. In this paper, we propose the Global-Locally Self-Attentive Dialogue State Tracker (GLAD), which learns representations of the user utterance and previous system actions with global-local modules. Our model uses global modules to share parameters between estimators for different types (called slots) of dialogue states, and uses local modules to learn slot-specific features. We show that this significantly improves tracking of rare states and achieves state-of-the-art performance on the WoZ and DSTC2 state tracking tasks. GLAD obtains 88.1% joint goal accuracy and 97.1% request accuracy on WoZ, outperforming prior work by 3.7% and 5.5%. On DSTC2, our model obtains 74.5% joint goal accuracy and 97.5% request accuracy, outperforming prior work by 1.1% and 1.0%.

View on arXiv
Comments on this paper